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dynamic causal model (DCM) of steady-state responses in electrophysiological
data that are summarised in terms of their cross-spectral density. These spectral data-features are generated
by a biologically plausible, neural-mass model of coupled electromagnetic sources; where each source
comprises three sub-populations. Under linearity and stationarity assumptions, the model's biophysical
parameters (e.g., post-synaptic receptor density and time constants) prescribe the cross-spectral density of
responses measured directly (e.g., local field potentials) or indirectly through some lead-field (e.g.,
electroencephalographic and magnetoencephalographic data). Inversion of the ensuing DCM provides
conditional probabilities on the synaptic parameters of intrinsic and extrinsic connections in the underlying
neuronal network. This means we can make inferences about synaptic physiology, as well as changes induced
by pharmacological or behavioural manipulations, using the cross-spectral density of invasive or non-
invasive electrophysiological recordings. In this paper, we focus on the form of the model, its inversion and
validation using synthetic and real data. We conclude with an illustrative application to multi-channel local
field potential data acquired during a learning experiment in mice.

© 2008 Elsevier Inc. All rights reserved.
Introduction

This paper is concerned with modelling steady-state or (quasi)
stationary responses recorded electrophysiologically using invasive or
non-invasive techniques. Critically, the models are parameterised in
terms of neurophysiologically meaningful parameters, describing the
physiology and connectivity of coupled neuronal populations sub-
tending observed responses. The model generates or predicts the
cross-spectral density of observed responses, which are a simple but
comprehensive summary of steady-state dynamics under linearity
and stationarity assumptions. Furthermore, these cross-spectral
features can be extracted quickly and simply from empirical data. In
this paper, we describe the model and its inversion, with a focus on
system identifiability and the validity of the proposed approach. This
method is demonstrated using local field potentials (LFP) recorded
from Pavlovian fear conditioned mice. In subsequent papers, we will
apply the model to LFP data recorded during pharmacological
experiments.

The approach described below represents the denouement of
previous work on dynamic causal modelling of spectral responses. In
Moran et al., (2007), we described how neural-mass models, used
originally to model evoked responses in the electroencephalogram
).

rights reserved.
(EEG) and magnetoencephalogram (MEG) (David et al., 2003, 2005;
Kiebel et al., 2007), could alsomodel spectral responses as recorded by
LFPs. This work focussed on linear systems analysis and structural
stability, in relation to model parameters. We then provided a face
validation of the basic idea, using single-channel local field potentials
recorded from two groups of rats. These groups expressed different
glutamatergic neurotransmitter function, as verified with microdia-
lysis (Moran et al., 2008). Using themodel, wewere able to recover the
anticipated changes in synaptic function.

Here, we generalise this approach to provide a full dynamic causal
model (DCM) of coupled neuronal sources, where the ensuing
network generates electrophysiological responses that are observed
directly or indirectly. This generalisation rests on two key advances.
First, we model not just the spectral responses from each electro-
magnetic source but the cross-spectral density among sources. This
enables us to predict the cross-spectral density in multi-channel data,
even if it has been recorded non-invasively through, for example, scalp
electrodes. Second, in our previous work we made the simplifying
assumption that the neuronal innovations (i.e. the baseline cortical
activity) driving spectral responses were white (i.e., had uniform
spectral power). In this work, we relax this assumption and estimate,
from the data, the spectral form of these innovations, using a more
plausible mixture of white and pink (1/f) components.

This paper comprises three sections. In the first, we describe the
DCM, the cross-spectral data-features generated by the model and
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model inversion given these features. In the second section, we
address the face validity of themodel, using synthetic data to establish
that both the form of the model and its key parameters can be
recovered in terms of conditional probability densities. The para-
meters we look at are those that determine post-synaptic sensitivity
to glutamate from extrinsic and intrinsic afferents. In the final section,
we repeat the analysis of synthetic data using multi-channel LFP data
from mice, acquired during cued recall of a conditioned fear memory.
This section tries to establish the construct validity of DCM in relation
to the previous analyses of functional connectivity using cross-
correlogram analysis. These show an increase in the coupling between
the hippocampus and amygdala using responses induced by condi-
tioned fear-stimuli. We try to replicate this finding and, critically,
extend it to establish the changes in directed connections thatmediate
this increased coupling.

The dynamic causal model

In this section, we describe the model of cross-spectral density
responses. Much of this material is based on linear systems theory and
the differential equations that constitute our neural-mass model of
underlying dynamics. We will use a tutorial style and refer interested
readers to appendices and previous descriptions of the neural-mass
model for details. We first consider the generative model for cross-
spectral density and then describe how these cross-spectral features
are evaluated. Finally, we review model inversion and inference.

A generative model for cross-spectral density

Under stationarity assumptions, one can summarize arbitrarily
long electrophysiological recordings from multi-channel data in
terms of cross-spectral density matrices, g(ω)c at frequency ω
(radians per second). Heuristically, these can be considered as a
covariance matrix at each frequency of interest. As such, these
second-order data-features specify, completely, the second-order
moments of the data under Gaussian assumptions. Cross-spectral
density is useful because it represents the important information, in
long time-series, compactly. Furthermore, it brings our data model-
ling into the domain of conventional spectral analysis and linear
systems theory. The use of linear systems theory to derive the
predicted spectral response from a non-linear dynamical system
assumes that changes in the (neuronal) states of the system can be
approximated with small perturbations around some fixed-point.
This assumption depends on the experimental design and is more
easily motivated when data are harvested during periods of limited
perturbations to the subject's neuronal state. In short, we discount
the possibility of phase-transitions and bifurcations (e.g., oscillatory
dynamics) due to the non-linear properties of cortical macrocolumns
(e.g. Breakspear et al., 2006).

The neural mass model
The underlying dynamic causal model is defined by the equations

of motion
:
x tð Þ = f x;uð Þ at the neuronal level. In this context, they

correspond to a neural-mass model that has been used extensively in
the causal modelling of EEG and MEG data and has been described
previously for modelling spectral responses (Moran et al., 2007,
2008). This model ascribes three sub-populations to each neuronal
source, corresponding roughly to spiny stellate input cells, deep
pyramidal output cells and inhibitory interneurons. Following
standard neuroanatomic rules (Felleman and Van Essen 1991), we
distinguish between forward connections (targeting spiny stellate
cells), backward connections (targeting pyramidal cells and inhibitory
interneurons with slower kinetics) and lateral connections (targeting
all subpopulations); see Fig. 1 and Moran et al., (2007). Each neuronal
source could be regarded as a three-layer structure, in which spiny
stellate cells occupy the granular layer, while infragranular and
supragranular layers contain both pyramidal cells and inhibitory
interneurons.

Each subpopulation is modelled with pairs of first-order differ-
ential equations of the following form:

:
xv = x1

:
xI = κH E xð Þ + C uð Þð Þ−2κx1−κ2xv

ð1Þ

The column vectors xv and xI, correspond to the mean voltages and
currents, where each element corresponds to the hidden state of the
subpopulation at each source. These differential equations implement
a convolution of a subpopulation's presynaptic input to produce a
postsynaptic response. The output of each source is modelled as a
mixture of the depolarisation of each subpopulation. Due to the
orientation of deep pyramidal cell dendrites, tangential to the cortical
surface, this population tends to dominate LFP recordings. We
accommodate this by making the output of each source, g(x) a
weighted mixture of xv with weights of 60% for the pyramidal
subpopulation and 20% for the others. The presynaptic input to each
subpopulation comprises endogenous, E(x), and exogenous, C(u),
components

Endogenous inputs
In a DCM comprising s sources, endogenous input E(x) is a

weighted mixture of the mean firing rates in other subpopulations
(see Fig. 1). These firing rates are a sigmoid activation function of
depolarisation, which we approximate with a linear gain function;
S(xi)=Sxi∈ℜsx1. Firing rates provide endogenous inputs from sub-
populations that are intrinsic or extrinsic to the source. Subpopulations
within each source are coupled by intrinsic connections, whose
strengths are parameterised by γ={γ1,…,γ5}. These endogenous
intrinsic connections can arise from any subpopulation and present
with small delays. Conversely, endogenous extrinsic connections arise
only from the excitatory pyramidal cells of other sources and effect a
longer delay than intrinsic connections. The strengths of these
connections are parameterised by the forward, backward and lateral
extrinsic connection matrices AF∈ℜsxs, AB∈ℜsxs and AL∈ℜsxs respec-
tively. The postsynaptic efficacy of connections is encoded by the
maximum amplitude of postsynaptic potentials He,i=diag(H1,…,Hs)
(note the subscripts in Fig.1) and by the rate-constants of postsynaptic
potentials, κ=diag(κ1,…,κs) for each source. The rate-constants are
lumped representations of passive membrane properties and other
spatially distributed dynamics in the dendritic tree.

Exogenous inputs
Exogenous inputs C(u)=Cu are scaled by the exogenous input

matrix C∈ℜsxs so that each source-specific innovation u(t)∈ℜsx1

excites the spiny stellate subpopulation. We parameterise the spectral
density of this exogenous input, g(ω)u, in terms of white (α) and pink
(β) spectral components:

gk ωð Þu = αu + βu=ω ð2Þ

Neuronal responses
The cross-spectral density is a description of the dependencies

among theobserved outputs of theseneuronal sources.Wewill consider
a linear mapping from s sources to c channels. In EEG and MEG this
mapping is a lead-field or gain-matrix function, L(θ)∈ℜcxs, of unknown
spatial parameters, θ, such as source location and orientation. Generally,
this function rests upon the solution of a well-posed electromagnetic
forward model. For invasive LFP recordings that are obtained directly
from the neuronal sources, this mapping is a leading diagonal gain-
matrix, L=diag(θ1,...θs) where the parameters model electrode-specific
gains. The observed output at channel i is thus Si(t)=Lig(x), where g(x) is
the source output (a mixture of depolarisations) and Li represents the



Fig. 1. Schematic of the source model with intrinsic connections. This schematic includes the differential equations describing the motion of hidden electrophysiological states. Each
source is modelled with three subpopulations (pyramidal, spiny-stellate and inhibitory interneurons) as described in (Jansen and Rit, 1995). In this figure these subpopulations have
been assigned to granular and agranular cortical layers, which receive forward, backward and lateral connections from extrinsic sources in the network.
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i-th lead-field or row of the gain-matrix. In other words, L=ℜ1xs is the
change in observed potential caused by changes in source activity.
These observed outputs can now be used in a generative model of
source cross-spectral measures.

Cross-spectral density
The neuronal model comprises a network of neuronal sources, each

of which generates stationary time-series in a set of recording channels.
These steady-state dynamics are expressed, in the frequency domain,
as cross-spectral densities, gij(ω), at radial frequencies ω, between
channels i and j. Under linear systems theory, the cross-spectral density
induced by the k-th input or innovationuk(t), is simply the cross-transfer
function Γij

k(ω) times the spectral density of that innovation, gk(ω)u. This
transfer function is the cross-product of the Fourier transforms of the
corresponding first-order kernels, κik(t) and κi

k(t) and in the case of i= j
may be regarded as the modulation or self-transfer function).

Ck
ij ωð Þ = jRκk

i tð Þe−jωtdt∫κk
i tð Þejωt j

gij ωð Þ = P
k
Ck
ij ωð Þgk ωð Þu

ð3Þ

The convolution kernels mediate the effect of the k-th input, at
time t in the past, on the current response recorded at each channel. In
general, they can be regarded as impulse response functions and
describe the output at the i-th channel, Si(t), produced by a spike of
the k-th exogenous input, uk(t). The kernel for each channel obtains
analytically from the Jacobian ℑ=∂f/∂x describing how the system's
hidden neuronal states, x(t), couple inputs to outputs. For channel i,
and input k the kernel is

κk
i τð Þ = Asi tð Þ

Auk t−τð Þ
=
Asi tð Þ
Ag tð Þ

Ag tð Þ
Ax tð Þ

Ax tð Þ
Ax t−τð Þ

Ax t−τð Þ
Aẋ t−τð Þ

Aẋ t−τð Þ
Auk t−τð Þ

= Li
Ag
Ax

exp Iτð ÞI−1 Af
Auk

ð4Þ

This means the kernels are analytic functions of ẋ tð Þ = f x;uð Þ and
s(t)=Lg(x); the network's equations of motion and output function
respectively. The use of the chain rule follows from the fact that the only
waypast inputs can affect current channel outputs is through thehidden
states. It is these states that confer memory on the system. In Appendix

A, we present an alternative derivation of the cross-spectral density
using the Laplace transform of the dynamics in state-space form. This
gives a more compact, if less intuitive, series of expressions that are
equivalent to the kernel expansion. In this form, the Jacobian is known
as the state transition matrix. To accommodate endogenous input
delays between different sources and intrinsic transmission delays
between different populations within one source, we augment the
Jacobian using a Hadamard product; Ip I + τIð Þ−1I, which is based on
a Taylor approximation to the effect of delays, τ (see Appendix A.1 of
David et al., 2006 for details).

To furnish a likelihood model for observed data-features we
include a cross-spectral density ψij induced by channel noise and add
a random observation error to the predicted cross-spectral density.



Table 1
Parameter Priors for model parameters including the observation model, neuronal
sources, and experimental effects

Parameter
ϑi=πiexp(Θi)

Interpretation Prior

Mean: πi Variance:
Θi=N(0,σi)

Observation model
αu Exogenous white input παu

=0 σαu
=1/16

αs Channel specific white noise παs
=0 σαs

=1/16
αc White noise common to all channels παc

=0 σαc
=1/16

βu Exogenous pink input πβs
=0 σβu

=1/16
βs Channel specific pink noise πβc

=0 σβs
=1/16

βc Pink noise common to all channels πθi=1 σθi=exp(8)
θ1…s Lead-field gain πλ=0 σλ=1
λ Noise hyperparameter

Neuronal sources
κe/i Excitatory/inhibitory rate constants πκe=4 ms−1

πκi=16 ms−1
σκe=1/8
σκi=1/8

He/i Excitatory/inhibitory maximum
post-synaptic potentials

πHe
=8 mV

πHi
=32 mV

σHe
=1/16

σHi
=1/16

γ1,2,3,4,5 Intrinsic connections πγ1
=128 σγ1

=0
πγ2

=128 σγ2
=0

πγ3
=64 σγ3

=0
πγ4

=64 σγ4
=0

πγ5
=4 σγ5

=0
AF Forward extrinsic connections πAF=32 σAF=1/2
AB Backward extrinsic connections πAB=16 σAB=1/2
AL Lateral extrinsic connections πAL=4 σAL=1/2
C Exogenous input πC=1 σc=1/32
di Intrinsic delays πdi

=2 σdi
=1/16

de Extrinsic delays πde
=10 σde

=1/32
Design βki Trial specific changes πβki

=1 σβki
=1/2

In practice, the non-negative parameters of this model are given log-normal priors, by
assuming a Gaussian density on a scale parameter, Θi=N (0,σi), where ϑi=πiexp(Θi), and
πi is the prior expectation and σi

2 is its log-normal dispersion.
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Finally, we apply a square root transform to the observed and predicted
densities to render the observation errorapproximatelyGaussian. Cross-
spectral densities will asymptote to a Wishart distribution at a large
sample limit (Brillinger, 1969). However, when averaging each cross or
auto-spectral frequency variate across multiple trials, one can appeal to
the central limit theorem and assume a near normal distribution. In
caseswheremultiple realisations are limited (see Empirical Demonstra-
tion below) the square-root transform renders a Gaussian assumption
more valid (see Kiebel et al., 2005 for a comprehensive treatment). The
advantage of being able to assume Gaussian errors is that we can invert
the model using established variational techniques under something
called the Laplace assumption (Friston et al., 2007); this means the
current DCM is inverted using exactly the same scheme as all the other
DCMs of neurophysiological data we have described.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gij ωð Þc

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gij ωð Þ + ψ ωð Þij

q
+ e ωð Þ

ψ ωð Þij =
�
ψc + ψs i = j
ψc i≠j

ψc = αc + βc=ω

ψs = αs + βs=ω

ð5Þ

The spectral densities, ψc and ψs model the contributions of common
noise sources (e.g., a common reference channel) and channel-specific
noise respectively. As with the neuronal innovations we parameterise
these spectral densities as an unknown mixture of white and pink
components. The observation error ɛ~N(0, Σ (λ)) has a covariance
function, Σ(λ)=exp(λ)V(ω), where λ are unknown hyperparameters
and V(ω) encodes correlations over frequencies1.

Eqs. (1) to (5) specify the predicted cross-spectral density between
any two channels given the parameters of the observation model {α,
β, λ, θ} and the neuronal state equations, {κ, H, γ, A, C}. This means
that the cross-spectral density is an analytic function of the
parameters ϑ={α, β, κ,H, γ, A, C, λ,θ} and specifies the likelihood
p(gc |ϑ) of observing any given pattern of cross-spectral densities
at any frequency. When this likelihood function is supplemented
with a prior density on the parameters, p(ϑ) (see Moran et al., 2007
and Table 1), we have a full probabilistic generative model for cross-
spectral density features p(gc,ϑ) =p(gc |ϑ) p(ϑ) that is specified in
terms of biophysical parameters. Next, we look at how to extract the
data features this model predicts.

Evaluating the cross-spectral density

The assumptions above establish a generative model for cross-
spectral features of observed data under linearity and local stationar-
ity assumptions. To invert or fit this model we need to perform an
initial feature selection on the raw LFP or M/EEG data. In this section,
we describe this procedure, using a vector auto-regression (VAR)
model of the multi-channel data and comment briefly on its
advantages over alternative schemes. We use a p-order VAR-model
of the channel data y, to estimate the underlying auto-regression
coefficients A(p)∈ℜcxc (where c is the number of channels2).

yn = A 1ð Þyn−1 + A 2ð Þyn−2 N + A pð Þyn−p + e ð6Þ
1 In our work, we use an AR(1) autoregression model of errors over frequencies, with
an AR coefficient of one half and ensure that the error covariance components
associated with the cross-spectral density between channels i and j are the same as
the corresponding component for the cross-spectral density between channels j and i.

2 For computational expediency, if there are more than eight channels, we project
the data and predictions onto an eight-dimensional subspace defined by the principal
components of the prior covariance matrix in channel space

∑i AL
Aθiσ2

i
ALT

Aθi

where σi
2 is the prior variance of the i-th spatial or gain parameter.
Here the channel data at the n-th time point,yn, represents a signal
vector over channels. The autoregressive coefficients A(k) are esti-
mated using both auto-and cross-time-series components. These,
along with an estimated channel noise covariance, Eij provide a direct
estimate of the cross-spectral density, gij(ω)c= f(A(p)), using the
following transform:

Hij ωð Þ = 1

A 1ð Þ
ij eiw + A 2ð Þ

ij ei2w + N N + A pð Þ
ij eipw

gij ωð Þc =H ωð ÞijEijH ωð Þ4ij
ð7Þ

The estimation of the auto-regression coefficients, A(k)∈A(p) uses
the spectral toolbox in SPM (http://www.fil.ion.ucl.ac.uk) that allows
for Bayesian point estimators of A(p), under various priors on the
coefficients. Details concerning the Bayesian estimation of the VAR-
coefficients can be found in Roberts and Penny (2002). Briefly, this
entails a variational approach that estimates the posterior densities of
the coefficients. This posterior density is approximated in terms of its
conditional mean and covariance; p(A|y, p)=N(μA,ΣA). These moments
are optimised through hyperparameters vE and vA (with Gamma
hyperpriors; Γ(103, 10−3)) encoding the precision of the innovations e
and the prior precision, respectively3:

μA =∑AvE ỹ
Ty

∑A = vE ỹ
T ỹ + vAI

� �−1 ð8Þ

Equation 7 uses the posterior mean of the coefficients to provide the
cross-spectral density features.
3 o > tiy comprise the time lagged data.

http://www.fil.ion.ucl.ac.uk


Fig. 2. The log-evidence for different order VAR models. The variational Bayes approach
described in the text provides the log model evidence for different VAR model orders.
This analysis illustrates a large increase in model evidence up to order twelve (black)
and small increases thereafter (grey). This increase in evidence occurs at an order that is
equal to the number of poles of the DCMs transfer function (see Appendix B).
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The advantage of our parametric approach is its structural
equivalence to the generative model itself. We use uninformative
priors but place formal constraints on the estimation of cross-spectral
density through the order p of the VAR-model. This has important
regularising properties when estimating the spectral features. Alter-
natively, non-parametric methods could be used to quantify the cross-
spectral density; e.g., a fast Fourier transform (FFT). However, in the
case of a priori information regarding model order, several advantages
exist for parametric approaches over the conventional FFT. One
inherent problem of the FFT is its limited ability to distinguish
between signal components at neighbouring frequencies. This
resolution in Hertz is roughly reciprocal to the time interval in
seconds, over which data are sampled. This is particularly problematic
for short time segments where low delta (2–4 Hz) or theta (4–8 Hz)
activity may be of interest. Secondly, when long data sequences are
evaluated, averaging methods using a windowed FFT must trade-off
spectral leakage and masking from side-lobes with broadening in the
main lobe, which further decreases resolution. These limitations can
be overcome using an AR model since frequencies can be estimated at
any frequency point up to the Nyquist rate, and do not require
windowing to obtain average steady-state estimates (Kay and Marple,
1981). The principle concern in using these AR methods is frequency
splitting (the appearance of a spurious spectral peak), that ensues
with overestimation of the model order (Spyers-Ashby et al., 1998).
However, we can avoid this problem by exploiting our neural mass
model: principled constraints on the order are furnished by the DCM
above and follow from the fact that the order of the underlying VAR
process is prescribed by the number of hidden neuronal states in the
DCM. Heuristically, if one considers a single source, the evolution of its
hidden states can be expressed as a p-variate VAR(1) process

x t + τð Þ = exp Iτð Þx tð Þ + η tð Þ ð9Þ
where η(t) corresponds to exogenous input convolved with the
system's kernel. Alternatively, we can represent this process with a
univariate AR(p) process on a single state. Because there is a bijective
mapping between source activity and measurement space, the
multivariate data can be represented as a VAR(p) process. We provide
a formal argument in Appendix B for interested readers.

The number of hidden states per source is twelve (see Fig. 1) and
this places an upper bound on the order of the VAR model4. The
relationship between the VAR model order and the number of hidden
states can be illustrated in terms of the log-evidence ln p(y|p) for VAR
models with different orders: we convolved a mixture of pink and
white noise innovations with the DCM's first-order kernel (using the
prior expectations) and used these synthetic data to invert a series of
VAR models of increasing order. Fig. 2 shows the ensuing model
evidence jumps to a high value when the order reaches twelve, with
smaller increases thereafter.

Model inversion and inference

Model inversion means estimating the conditional density of the
unknown model parameters p(ϑ|gc,m) given the VAR-based cross-
spectral density features gc for any model m defined by the network
architecture and priors on the parameters, p(ϑ|m). These unknown
parameters include (i) the biophysical parameters of the neural-mass
model, (ii) parameters controlling the spectral density of the neuronal
innovations and channel noise, (iii) gain parameters and (iv)
hyperparameters controlling the amplitude of the observation error
in Eq. (5). Themodel is inverted using standard variational approaches
described in previous publications and summarised in Friston et al.,
(2007). These procedures use a variational scheme in which the
4 In practice, we do not use the upper bound but use p=8 for computational
expediency; this seems to give robust and smooth spectral features.
conditional density is optimized under a fixed-form (Laplace)
assumption. This optimisation entails maximising a free-energy
bound on the log-evidence, 1n p(gc |m). Once optimised, this bound
can be used as an approximate log-evidence for model comparison in
the usual way. Comparing DCMs in a way that is independent of their
parameters is useful when trying to identify the most plausible
architectures subtending observed responses (Penny et al., 2004;
Stephan et al., 2007) and is used extensively in subsequent sections.
The focus of this paper is on the approximate log-evidence 1n p(gc |m)
and conditional densities p(ϑ|gc,m) and, in particular, whether they
can support robust inferences on neural-mass models and their
parameters.

Identifiability and face validity

In this section, we try to establish the face validity of the DCM and
inversion scheme described in the previous section. Here, we use
synthetic datasets generated by models with known parameters. We
then try to recover the best model and its parameters, after adding
noise to the data. We will address both inference on models and their
parameters. This involves searching over a space or set of models to
find the model with the greatest evidence. One then usually proceeds
by characterising the parameters of the best model in terms of their
conditional density. In both inference on models and parameters, we
used the same model employed to analyse the empirical data of the
next section. This enabled us to relate the empirical results to the
simulations presented below.

Inference on model-space

For inference onmodels, we generated data from three two-source
networks using extrinsic connections from the first to the second
source, from the second to the first and reciprocal connections. To
assess inference on model-space, we first performed a model
comparison using a small set of two source networks, delimited by
their forward connections only. Specifically, each of the three models
that were used to generate the model-specific data sets, were



Table 2a
Inference on model space: results of the Bayesian inversion on data simulated using
three different network architectures (column-wise)

Simulated network connections A2,1
F A1,2

F A2,1
F and A1,2

F

Modelled connections

A2,1
F 416.6 0 0

A1,2
F 0 399.2000 0.5000

A2,1
F and A1,2

F 398.4 381.6000 561.2000

Log-Bayes factors are presented relative to the worst model for each network. Best
performing models are in bold. For all three simulations, the corresponding model-
architecture was found to have the highest Log-Bayes factor.

Table 2b
Inference on model space: Posterior probabilities of each model are computed by
assuming flat or uniform priors on models; normalising these values gives the
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compared across each set of data. We hope to show that the inversion
scheme identified the correct model in all three cases. In all three
models exogenous neuronal inputs entered both sources and the
connections were all of the forward type. These three models are also
evaluated in the empirical analysis. The parameter values for all three
models were set to their prior expectations5, with the exception of the
extrinsic connections, for which we used the conditional estimates of
the empirical analysis. Datawere generated over frequencies from 4 to
48 Hz and observation noise was added (after the square root
transform). The variance of this noise corresponded to the conditional
estimate of the error variance from the empirical analysis.

The resulting three data sets were then inverted using each of the
three models. For each data set, this provided three log-evidences
(one for eachmodel used to fit the spectral data).We normalised these
to the log-evidence of the weakest model to produce log-likelihood
ratios or log-Bayes factors. The results for the three models are shown
in Table 2a. These indicate that, under this level of noise, DCMwas able
to identify the model that actually generated the data. In terms of
inference on model-space, we computed the posterior probability of
each model by assuming flat or uniform priors on models; under this
assumption p(y|mi)∝p(mi|y), which means we can normalise the
evidence for each model, given one data set and interpret the result as
the conditional probability on models. These are expressed as
percentages in Table 3b and show that we can be almost certain
that the correct model will be selected from the three-model set, with
conditional probabilities close to one for correct models and close to
zero for incorrect models Following the suggestions of our reviewers,
we performed a second analysis where we compared all possible two-
source DCM networks. This model space, which comprised 256
models in total, was derived by considering all possible permutations
of inputs and connections. We would like to emphasize that this brute
force method of testing all possible models (which can be very
expensive in terms of computation time) is appropriate only when
using small networks with a limited number of free variables. In the
applied case of analysing empirical data, DCM is used to test a limited
number of hypotheses regarding the type of neuronal architecture
that subtends observed experimental responses (e.g. Grol et al., 2007;
Stephan et al., 2006a, 2007). This is because (i) the precision of
inference with DCM generally favours a strongly hypothesis-driven
approach and (ii) the combinatorics of possible DCMs quickly explodes
with the number of sources and connections.

The results of this second analysis show that DCM can correctly
identify the generative model, even when all 256 possible models are
considered. For each of the three data sets that were inverted, the log-
evidence was greatest for the correct generative model (Fig. 3). The
relative log-evidence or log Bayes-factors for the best compared to the
second best model offered strong support for the correct model, in all
5 These expectations are biologically plausible amplitudes and rate constants that
have been used in previous instances of the model (Jansen et al., 1993; David et al.,
2005) and are summarized in Moran et al., 2007 and Table 1. In this study, prior
variances on the intrinsic connectivity parameters were set to zero.
three cases (ln BF1=14.6 ; ln BF2=16.2 ; ln BF3=16.4). Note that when
we talk of the ‘best' model, wemean a model for which there is strong
evidence relative to any competing model. In other words, we can be
95% confident that the evidence for the best model is greater than any
other (this corresponds to a relative log-evidence of about three). In
summary, Bayesian model comparison with DCM seems to be able to
identify these sorts of models with a high degree of confidence.

Inference on parameter-space

For inference on parameters, we looked at the effects of changing
themaximumamplitudes of excitatory postsynaptic potentials (EPSP),
which control the efficacy of intrinsic and extrinsic connections and
the effects of changing the extrinsic connections themselves. These
effects are encoded in the parameters He∈ϑ and AF∈ϑ, respectively.
We addressed identifiability by inverting a single model using
synthetic data with different levels of noise. By comparing the true
parameter values to the conditional confidence intervals, under
different levels of noise, we tried to establish the accuracy of model
inversion and how this depends upon the quality of the data. As above,
we chose different levels of noise based upon the error variance
estimated using real data. Specifically, we varied the noise levels from
0.001 to 2 times the empirical noise variance, allowing a broad
exploration of relative signal-to-noise ratios (SNR) .

The model we used is the same model identified by the empirical
analyses of the next section. This model comprised two sources and
two LFP channels with no cross-talk between the channels. The
parameter values were based on the estimates from the empirical
analysis. Specifically, source 1 sent a strong extrinsic connection to
source 2, whose excitatory cells had a relatively low postsynaptic
response (Fig. 4). All parameter values were set to their prior
expectation, except for the parameters of interest He

(2) and A21
F .

In our DCM, parameters are optimised by multiplying their prior
expectation with an unknown log-scale parameter that is exponen-
tiated to ensure positivity. Hence, a log-scale parameter of zero
corresponds to a scale-parameter of one, which renders the parameter
value equal to its prior expectation. By imposing Gaussian priors on
the log-scale parameters we place log-normal priors on the
parameters per se. To model reduced postsynaptic amplitudes in
source 2, He

2 had a log-scale parameter of −0.4 representing a exp
(−0.4)=67% decrease from its prior expectation. The log-scale
parameter encoding the forward connection from source 1 to source
2, namely A2,1

F , was set to 1.5, representing a exp(1.5)=448% increase
from its prior expectation. Both sources received identical neuronal
innovations, comprising white and pink spectral components (as
specified in Equation 2 above). Data were generated over frequencies
from 4 to 48 Hz.

Posterior density estimates for all parameters, p(ϑ | gc,m) were
obtained for 128 intermediate noise levels between one thousandth
and twice the empirical noise variance. The conditional expectation or
MAP (maximum a posteriori) estimates of He

(2) and A2,1
F are shown in

Fig. 5 (hashed red line). The (constant) true parameter values are
indicated by the solid red line, and the prior value is in grey. The
shaded areas correspond to the 90% confidence intervals based on the
conditional probability of the models presented here as percentages

Simulated network connections A2,1
F A1,2

F A2,1
F and A1,2

F

Modelled connections %

A2,1
F 100 0 0

A1,2
F 0 100 0

A2,1
F and A1,2

F 0 0 100



Fig. 3. The log-evidence formodels tested from three different generative architectures. These are the results of a full test over all possible two-source DCMmodels, comprising 256 in
total. Red bars and arrow indicate the model with the greatest log evidence. In all three cases this corresponds to the correct generative model (a) Generative model 1 comprising
forward connections from the first to the second source, (b) Generative model 2 comprising forward connections from the second to the first source and (c) Generative model 3
comprising reciprocal forward connections.
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conditional or posterior density. The lower panels show the condi-
tional probabilities p(He

(2)b8) and p(A2,1
F N32) that the parameters

differed from their prior expectations.
It can be seen that the conditional expectation remained close to

the true values for both parameters, despite differences in their
conditional precision, which decreased with increasing levels of
observation noise. This can be seen in the shrinking Bayesian
confidence intervals (grey area) and in the small increase in
conditional probabilities with less noise. This effect is more marked
for the estimates of He

(2); where the confidence intervals splay at
higher noise levels. This jagged variance in the confidence interval
itself reflects the simulation protocol, in which each data set
comprised a different noise realisation. In addition, the lowest
conditional probability (that the parameter posterior estimate differed
from the prior) for all simulations, occurred for this EPSP parameter
where p(He

(2)b8)= .74 at a high noise level of 1.83. In contrast, the
connection strength parameter remained within tight confidence
bounds for all noise levels and produced a minimum conditional
probability, p(A2,1

F b32)= .99. This minimum occurred again as
expected, at a high noise levels of 1.72 times the empirical noise
level. One can also see, for both parameters a trend for conditional
estimates to shrink towards the prior values at higher noise levels; this
shrinkage is typical of Bayesian estimators; i.e. when data become
noisy, the estimation relies more heavily upon priors and the prior
expectation is given more weight (Friston et al., 2003). Importantly,
while the 90% confidence bounds generally encompass the true
values, the prior values remain outside. In summary, under the
realistic levels of noise considered, it appears possible to recover
veridical parameter estimates and be fairly confident that these
estimates differ from their prior expectation.

Empirical demonstration

In this section, we present a similar analysis to that of the previous
section but using real data. Furthermore, to pursue construct-validity,
we invert the model using data acquired under different experimental
conditions to see if the conditional estimates of various synaptic
parameters change in a way that is consistent with previous analyses
of functional connectivity using cross-correlograms. These analyses
suggest an increase in coupling between the amygdala and hippo-
campus that is expressed predominantly in the theta range. This
section considers the empirical data set-up, experimental design and
inference on models and parameters. We interpret the conditional
estimates of the parameters, in relation to the underlying physiology,
in the Discussion.

Empirical LFP data

Local field potential data were acquired from mice (adult male
C57B/6J mice, 10 to 12 weeks old) during retrieval of a fear-memory,



Fig. 4. Simulated two source model where excitatory responses are modulated via a scaling of an intrinsic maximum EPSP parameter in source 2: He
(2) and an extrinsic connection

from source 1 to source 2: A21
F . The inversion scheme was tested by recovering the posterior estimates of these parameters, under different levels of observation noise.
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learned in a Pavlovian conditioning paradigm using acoustic tones
(CS+ and CS-) and foot-shock (US). A previous analysis of these data
(Seidenbecher et al., 2003) points to the importance of theta rhythms
(∼5 Hz) during fear-memory retrieval (Pape and Stork, 2003; Buzsaki,
2002). Specifically, Seidenbecher et al., (2003) demonstrated an
increase in theta-band coupling between area CA1 of the hippocam-
pus and the lateral nucleus of the amygdala (LA) during presentation
of the CS+. Moreover, theta synchrony onset was correlated with
freezing, a behavioural index of fear-memory (Maren et al., 1997). For
the purposes of demonstrating our DCM, we here revisit the data of a
single animal and show that this ‘on/off’ theta synchrony can be
explained with plausible neurobiological mechanisms at the synaptic
level, using themethodology described in the previous sections. These
data represent quasi-stationary signals as evidenced by small time
variations in signal strength (Figs. 5a and b). The term “steady-state”
refers to the frequency estimates that represent only the constant
spectral amplitude and are the complete data feature captured by this
DCM. Below, we examine induced steady-state responses, where
spectral estimates are averaged over independent trials. However,
there is no principled reason why the current model may not be
inverted using spectra from a time-frequency analysis of evoked
responses or event related responses, under the assumption of local
stationarity over a few hundred milliseconds (e.g. Robinson et al.,
2008; Kerr et al., 2008).
LFP data were recorded from two electrodes in the LA and the CA1
of the dorsal hippocampus. The data comprised 6 min of recording,
during which four consecutive CS- tones and four consecutive CS+
tones were presented, each lasting 10 s. Freezing behaviour was seen
prominently during the CS+. Preliminary analysis, using time-
frequency spectrograms, revealed that the hippocampal region
exhibited strong background theta rhythms, during CS+ and CS-
epochs (Figs. 5a and b); whereas theta activity in lateral amygdala was
prominent only during the CS+ stimulus. Fig. 6 displays the first CS+
and CS- epochs of fear recall. Cross-spectra were computed for three-
second epochs that followed the onset of freezing behaviour in the
four CS+ epochs and order-time matched CS- epochs. Cross-spectral
densities were computed from 4 to 48 Hz, using an eighth-order VAR
model, for each epoch and averaged across conditions (Fig. 7). This
revealed spectral features that corroborated the analysis of Seidenbe-
cher et al., (2003); with pronounced fast theta activity in the
hippocampus and a marked theta peak in the cross-spectral density.
The amygdala showed a broader spectrum, with a preponderance of
lower theta activity and a theta peak in, and only in, the CS+ trial.

Dynamic causal modelling

These cross-spectral densities were then inverted using a series of
generative models. These models were used to test the direction of



Fig. 5. Conditional densities of parameter estimates using the two-source simulations. The data were generated under known parameter values (red line) and mixed with noise (one
thousandth to twice the empirical noise estimate). The EPSP parameter (Top left) was exp (−0.4)=67% of its prior expectation. TheMAP estimates for this log-scale parameter (plotted
in hashed red) display a characteristic shrinkage toward the prior of zero at high levels of noise (90% confidence intervals are plotted in grey). The extrinsic connection parameter (Top
right) A21

F displays a similar behaviour, when simulated at exp(1.5)=448% of its prior expectation. The grey lines show the prior value (of zero) used for the simulations. The bottom
graphs show the conditiona l probabilities that the MAP estimates of the log-scale parameters differ from their prior expectation.

804 R.J. Moran et al. / NeuroImage 44 (2009) 796–811
information flow during heightened theta synchrony following CS+.
Given key experimental differences between CS- and CS+ trials, we
introduced log-scale parameters βki to model trial-specific variations
in specified parameters:

ϑ j
i =ϑi exp ∑

k
Xjkβki

� �

X = 0
1

� 	 ð10Þ

βki is the k-th experimental effect on the i-th parameter and ϑi
j is the

value of the i-th parameter ϑi in the j-th trial or condition. These
effects are meditated by an experimental design matrix X, which
encodes how experimental effects are expressed in each trial.

Eq. (10) is a generic device that we use to specify fully para-
meterised experimental effects on specific parameters in multi-trial
designs. In this example, β1i is simply a log-scale parameter (Table 1)
specifying the increase (or decrease) in CS+ relative to CS- trials. The
parameters showing trial-specific effects were the extrinsic connec-
tions and excitatory post synaptic amplitudes; all other parameters
we fixed over trials.

Inference on models
The extrinsic connection types in our DCM are based on

connections between isocortical areas (Felleman and Van Essen
1991); however, in this analysis we are dealing with allocortical
(CA1) and subcortical (LA) brain regions that have no clearly defined
hierarchical relationship. Therefore, our first step was to establish
which connection type best explained the measured LFP data. We
approached this using model comparison using DCMs with
reciprocal connections between CA1 and LA. The connections in
these models were (model 1) forward; (model 2) backward; (model
3) lateral; (model 4) a combination of forward and backward and
(model 5) a combination of all three. Bayesian model comparison
based on the log-evidence indicated that the most likely type of
inter-regional connections was of the ‘forward’ type (model 1);



Fig. 6. CS+ (Left) and CS- (Right) spectrograms. Time-frequency data demonstrating theta activity at hippocampal (Top) and amygdala (Bottom) electrodes during the CS+ and CS-.
These plots are scaled relative to the maximum theta peak in the CS+ hippocampal image. They are displayed with corresponding behavioural modes represented as colour-bars;
where ‘f’ demarks freezing periods (the behavioural correlate of fear recall), ‘e’ exploration, ‘r’ risk assessment and ‘s’ stereotypical behaviour. During the CS+ condition theta activity
can be observed in both electrodes, in contrast, during the CS- condition, theta activity is evident in hippocam pal data but much less in the amygdala.
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where connections originate from pyramidal cells and target
excitatory interneurons. Fig. 8a shows the relative model evidences
for the five models (i.e., the log-Bayes factor with respect to the worst
model).

Next, employing the optimal connection type, three different
input schemes were tested to find where driving inputs, i.e. from
cortical regions, enter during CS+ and CS- epochs. These DCM's
included; (model 1) comprising exogenous inputs to both CA1 and
LA; (model 2) exogenous input to hippocampal region CA1 only and
(model 3) the lateral amygdala only. Fig. 8b shows that the best
model is model 1; where inputs enter both the lateral amygdala and
hippocampal CA1.

Having established a causal architecture for the inputs, three
further models were tested to examine whether connections were
bidirectional or unidirectional. These results are displayed in Fig. 8c,
where model 1 had bidirectional connections, model 2 had unidirec-
tional hippocampal to amygdala connections and model 3 had
connections from amygdala to hippocampus. We see that the most
plausible model contains bidirectional connections between hippo-
campus and amygdala.

In principle, as in the analysis of synthetic data above, there are 256
possible DCMs that could explain the empirical data. However, to
provide an exemplar strategy for when where exhaustive model
searches are not possible, we finessed the search of model space by
optimising various model attributes sequentially. This series of line
searches can be regarded as a heuristic search over model space to
identify the most likely model. One concern in using this sort of
heuristic search is that conditional dependencies among the free-
parameters do not guarantee the global maximum is found. To address
this, we performed a further analysis of the ‘complete’ model, which
comprised reciprocal connections of all types (forward and backward
and lateral), and inputs to both regions. The resulting conditional
covariance matrix was examined in order to investigate potential co-
dependencies between the parameters. The posterior correlation
matrix is shown in Fig. 9 and shows only relatively small inter-
dependencies between the search parameters. Overall, the accuracy of
the best performing model was impressive; the fits to the cross-
spectral data or shown in Fig.10 and are almost indistinguishable from
the observed spectra. Having identified this model we now turn to
inference on its parameters.

Inference on parameters
We now look at the conditional probabilities of key parameters

showing trial-specific or conditioning effects, under the most
plausible model. These parameters were the extrinsic connection
strengths and intrinsic postsynaptic efficacies. When comparing the
CS- and CS+ trials, we observe decreased amygdala-hippocampal
connectivity and increased hippocampal-amygdala connectivity. Fig.
11 shows the MAP estimates of ln β1i, which scale the extrinsic
connections relative to 100% connectivity in CS-. In addition, there



Fig. 7. Average cross-spectral densities across all CS+ (red) and CS- (blue) trials. Top left: hippocampal autospectrum, Top right: hippocampal-amygdala cross spectrum, Bottom right:
amygdala autospectrum. These spectral data features were evaluated from three second epochs after the first freezing behaviour during CS+ and the time/order matched CS- trials.
Peaks at theta frequency are evident in both CS+ and CS- conditions with reduced theta activity in the amygdala during CS-.
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were small increases in postsynaptic efficacy in the amygdala for the
CS+ relative to CS- Quantitatively, hippocampus-amygdala connectiv-
ity increased by 26%, with a conditional probability of 99.97% that this
effect was greater than zero. In contrast, amygdala-hippocampus
forward connections decreased by 72%, with a conditional probability
of almost one. The relative change of intrinsic amygdala excitatory
postsynaptic amplitude was 8% with a high conditional probability
99.85% that the increase was greater than zero. In contrast, changes
in hippocampal excitatory postsynaptic amplitude were unremark-
able, (0.002%) and with a conditional probability that was close to
chance (69.70%).

In summary, these results suggest that the hippocampus and
amygdala influence each other through bidirectional connections.
Steady states responses induced by CS+, relative to CS- stimuli appear
to increase the intrinsic sensitivity of postsynaptic responses in the
amygdala and with an additional sensitization to extrinsic afferents
from the hippocampus. At the same time the reciprocal influence of
the amygdala on the hippocampus is suppressed. These conclusions
are exactly consistent with early hypotheses based on correlations
(see below).

Discussion

We have described a dynamic causal model (DCM) of steady-
state responses that are summarised in terms of cross-spectral
densities. These spectral data-features are generated by a bio-
logically plausible, neural-mass model of coupled electromag-
netic sources. Under linearity and stationarity assumptions,
inversion of the DCM provides conditional probabilities on both
the models and the synaptic parameters of any particular model.
The model employed here has previously been shown to produce
oscillatory activity at all standard EEG frequency bands, in its
linear approximation (Moran et al., 2007). A nonlinear model
analysis could uncover interesting dynamics in some of these
bands and will be the subject of further research. This would call
for a relaxation of the linearization assumption and present an
interesting challenge for model inversion (c.f., Valdes et al.,
1999).

Recently, a number of studies have established the utility neural
mass models for interrogating EEG data. The motivations behind
this approach are varied. In Riera et al., (2006) neural masses are
used to investigate local electrovascular coupling and their multi-
modal time domain expression in EEG and fMRI data; while Valdes
et al. (1999) employ neural masses to examine the emergent
dynamic properties of alpha-band activity. Closer to the work
presented here, Robinson et al., (2004) have developed a frequency
domain description of EEG activity that highlights the importance
of corticothalamic interactions, using neural field models. As in
Robinson et al., (2004), the goal of DCM for steady-state responses
is to make inferences about, regionally-specific neurotransmitter



Fig. 8. Results of the Bayesianmodel comparison. Log Bayes factors are plotted relative to theworst model in each comparison. (a) Optimal connection type is found inModel 1, where
the connections are of the ‘forward’ type. (b) Model evidence supports Model 1, where exogenous inputs enter both the hippocampus and amygdala. (c) Model evidences suggest
reciprocal connections between the hippocampus and amygdala.
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and neuromodulatory action that unfolds in a connected but
distributed network. The DCM presented in this paper assumes a
network of point sources (c.f., equivalent current dipoles) that may
be usefully extended to cover neural field models of the sort
considered by Robinson et al., (2004). DCM enables inference about
synaptic physiology and changes induced by pharmacological or
behavioural manipulations both within and between neural
ensembles; furthermore, the methodology can be applied to the
cross-spectral density of invasive or non-invasive electrophysiolo-
gical recordings.

Usually, in Dynamic Causal Modelling, data prediction involves
the integration of a dynamical system to produce a time-series. In
the current application, the prediction is over frequencies; how-
ever, the form of the inversion remains exactly the same. This is
because in DCM for deterministic systems (i.e., models with no
system or state noise) the time-series prediction is treated as a
finite-length static observation, which is replaced here with a
prediction over frequencies. The only difference between DCM for
time-series and DCM for cross-spectral density is that the data-
features are represented by a three dimensional array, covering c×c
channels and b frequency-bins. In conventional time-series analysis
the data-features correspond to a two-dimensional array covering c
channels and b time-bins. The spectral summary used for data
inversion comprises the magnitude of cross-spectra, which is a
sufficient data-feature, under quasi-stationarity assumptions. Infor-
mation regarding instantaneous phase or phase-coupling among
sources are not considered in this treatment. In some settings,
phase-coupling has been used in linear and nonlinear settings to
model information exchange across discrete brain sources (e.g.,
Brovelli et al., 2004, Rosenblum et al., 1996). The DCM presented
here represents a complement to this approach by offering a
biophysically meaningful, mechanistic description of neuronal
interactions. An alternative DCM approach for M/EEG analysis has
been developed to describe (time-dependent) phenomenological
coupling among frequencies at different brain sources that occur
through both linear and nonlinear mechanisms (Chen et al., 2008).



Fig. 9. Posterior Correlation matrix of the DCM for the empirical data set. Data from a
DCM comprising all forward, backward and lateral connections as well as inputs to both
sources was used to demonstrate minimal posterior correlations in the set of
parameters comprising the hierarchical search. Red boxes highlight the correlations
among these parameters. The mean of the absolute value of correlations within this set
wa s − 0.24.

Fig. 10. Model fits for all empirical data (CS+ : red, CS-: blue). Top left: hippocampal auto
autospectrum. The measured spectra are shown with a dashed line and the conditional mo
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However, neither DCM model the instantaneous phase. Other
recent developments in M/EEG data analysis have tackled this
issue: Approaches involving ICA (Anemüller et al., 2003) have been
used to describe the phases of induced responses on a trial by trial
basis, and make use of complex lead-field distributions to retain
the imaginary parts of the source signals at the scalp level.
However this approach studies independent components of brain
activity and as such, is not directly comparable to DCM. DCM for
phase responses is an active area of research (Penny et al., 2008)
and will receive a full treatment elsewhere.

Our simulation studies provide some face validity for DCM, in
terms of internal consistency. DCM was able to identify the correct
model and, under one model, parameter values were recovered
reliably in settings of high observation noise. Changes in the
postsynaptic responsiveness, encoded by the population maximum
EPSP, were estimated veridically at levels below prior threshold, with
a conditional confidence of more than 74%; even for the highest levels
of noise. Similarly, inter-area connection strength estimates were
reasonably accurate under high levels of noise. With noisy data,
parameter estimates tend to shrink towards their prior expectation,
reflecting the adaptive nature of theweights afforded to prior and data
information in Bayesian schemes.

We have presented an analysis of empirical LFP data, obtained by
invasive recordings in rat CA1 and LA during a fear conditioning
paradigm. A previous analysis of these data (Seidenbecher et al.,
2003) showed prominent theta band activity in CA1 during both
CS+ and CS- conditions, whereas LA expresses significant theta
activity during CS+ trials only. Using an analysis of functional
spectrum, Top right: hippocampal-amygdala cross spectrum, Bottom right: amygdala
del predictions with a full line.



Fig. 11. Trial-specific effects encoding differences between the CS+, relative to CS- trials. Top left: Hippocampal EPSP displays b1% change on CS+ trials. Top right: amygdala to
hippocampus forward connection strength decreases by 72% on CS+ trials. Bottom left: Hippocampus to amygdala forward connection strength increases by 26% on CS+ trials. Bottom
right: amygdala EPSP increases by 8% in CS+ relative to CS- trials.
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connectivity6, based on cross-correlograms of LA/CA1 activity in the
theta range, Seidenbecher et al., (2003) demonstrated an increase in
connectivity between these two brain regions during CS+ trials. This
is consistent with a trial-specific enabling or gating of the CA1→LA
connection during retrieval of conditioned fear in the CS+ condition,
leading to a transient coupling of LA responses to the condition-
independent theta activity in CA1. However, this analysis of
functional connectivity was unable to provide direct evidence for
directed or causal interactions. This sort of evidence requires a
model of effective connectivity like DCM. The DCM analysis in the
present study confirmed the hypothesis based on the cross-
correlogram results of Seidenbecher et al., (2003). The DCM analysis
showed a selective increase in CA1→LA connectivity during CS+
trials, accompanied by a decrease in LA→CA1 connection strength.
An additional finding was the increase in the amplitude of
postsynaptic responses in LA during CS+ trials. This result may
represent the correlate of long term potentiation of LA neurons
6 Functional connectivity is defined as the statistical dependence between two
biophysical time-series, whereas effective connectivity refers to the directed and
casual influence one biophysical system exerts over another (Friston et al., 2003).
following fear conditioning (Rodrigues et al., 2004; LeDoux, 2000).
In summary, one could consider these results as a demonstration of
construct validity for DCM, in relation to the previous analyses of
functional connectivity using cross-correlograms.

The analysis of parameter estimates was performed only after
Bayesian model selection. In the search for an optimum model, we
asked (i) which connection type was most plausible, (ii) whether
neuronal inputs drive CA1, LA or both regions; and (iii) which
extrinsic connectivity pattern was most likely to have generated
the observed data (directed CA1→LA or LA→CA1 or reciprocal
connections). The results of sequential model comparisons showed
that there was a very strong evidence for a model in which (i)
extrinsic connections targeted excitatory neurons, (ii) neuronal
inputs drove both CA1 and LA and (iii) the two regions were linked
by reciprocal connections. While there is, to our knowledge, no
decisive empirical data concerning the first two issues, the last
conclusion from our model comparisons is supported strongly by
neuroanatomic data from tract-tracing studies. These have demon-
strated prominent and reciprocal connections between CA1 and LA
(see Pitkänen et al., 2000 for a review). This correspondence
between neuroanatomic findings and our model structure, which
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was inferred from the LFP data, provides further construct validity,
in relation to neuroanatomy.

In conclusion, this study has introduced a novel variant of DCM
that provides mechanistic explanations, at the level of synaptic
physiology, for the cross-spectral density of invasive (LFP) or non-
invasive (EEG) electrophysiological recordings. We have demon-
strated how this approach can be used to investigate hypotheses
about directed interactions among brain regions that cannot be
addressed by conventional analyses of functional connectivity. A
previous (single-source) DCM study (Moran et al., 2008) of invasive
LFP recordings in rats demonstrated the consistency of model
parameter estimates with concurrent microdialysis measurements.
The current study is another step towards establishing the validity of
models, which we hope will be useful for deciphering the neurophy-
siological mechanisms that underlie pharmacological effects and
pathophysiological processes (Stephan et al., 2006b).

Software note

Matlab routines and demonstrations of the inversion described in
this paper are available as academic freeware from the SPM website
(http://www.fil,ion.ucl.ac.uk/spm) and will be found under the
‘api_erp’, ‘spectral’ and ‘Neural_Models’ toolboxes in SPM8.
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Appendix A. Laplace description of cross-spectral density

Consider the State Space Model for a particular neuronal source

ẋ= Ax + Bu
y = Cx +Du

where A is the state transition matrix or Jacobian, x are the hidden
states (cf. Eq. (1)) and y is the source output. The Laplace transform
gives

sX sð Þ = AX sð Þ + BU sð Þ
Y sð Þ = CX sð Þ +DU sð Þ

Z
X sð Þ = sI−Að Þ−1BU sð Þ

Z
Y sð Þ = C sI−Að Þ−1B +D

� �
U sð Þ

=H sð ÞU sð Þ

ðAI:1Þ

Evaluating at s= jω gives the frequency output of the system. Given
that the cross-spectrum for two signals i and j is defined as Sij=YiYj⁎
and that inputs to the system are seen by both sources, we can write
the output cross-spectral density as

Sij =HiH4
j jUj ðAI:2Þ

where Hi is computed from the transition matrices of each source
directly. Furthermore, assuming white noise input we see from

y tð Þ = F−1 H jωð Þð ÞF−1 U jωð Þð Þ
F−1 U jωð Þð Þ = δ tð Þ ðAI:3Þ

that Hi are the Fourier Transforms of the impulse responses. In our
model, we supplement the input with pink (1/f) noise to render the
input biologically plausible input. We can now see directly how the
cross-spectral density in Eqs. (A1.2) and (3) are equivalent, in terms of
system response to the unit impulse.
Appendix B. VAR model order selection from the number of
hidden states

Consider the discrete-time signal described by the difference
equation

y tð Þ = −a1y t−1ð Þ−a2y t−2ð Þ N −apy t−pð Þ + e ðAII:1Þ

The Laplace transform of a sampled signal is known as the
Z-transform

L y tð Þð Þ = ∑
∞

n = 0
y n½ � ∫

∞

0−
δ t−nTð Þe−st

Y zð Þ = ∑
∞

n = 0
y n½ �e−st

ðAII:2Þ

For the AR model of AII.1 we obtain a Z domain representation

Y zð Þ = −a1z−1Y zð Þ−a2z−2Y zð Þ N apz−pY zð Þ + e zð Þ ðAII:3Þ

Now consider again the state-space form of each source in Eq.
(AI.1). We see that the form ofH(s) is a polynomial quotient, where the
denominator is the characteristic polynomial of the Jacobian A. This
contains powers of s up to the number of columns in A, indexed by the
number of hidden states; i.e. the length of vector x. Hence, for q roots
by partial fraction expansion we obtain

H sð Þ = A
s−λ1

+
B

s−λ2
+ N

K
s−λq

ðAII:4Þ

Using the s–z relation s+β=1–z−1e−βT, we obtain the order of the
AR model p, determined by the number of roots of the Jacobian q to
give the delay z−p in Eq. (AII.3).
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